Research Article                                     

 

Crossmark logo
 

Bone-Marrow–Derived MSC Transplantation Enhances Neuronal Survival and Reduces Secondary Cellular Injury in Rat Spinal Cord Trauma Models

Aiden R. Halstrom PhD1, Marissa K. Delaney PhD1, Julian T. Kessler PhDORCID2*

1 Stem Cell and Molecular Therapeutics Division, Center for Advanced Translational Neuroscience, San Diego, California, USA.
2 Laboratory of Neural Repair and Bioengineering, Atlantic Biomedical Sciences University, Boston, Massachusetts, USA.

DOI: 10.18081/pcij/2378-5225/14.18             Cited by icon Cited by 0 OpenAlex Scholar Crossref

Article history: Received 22 October 2024 · Revised 09 December 2024 · Accepted 19 December 2024 · Published 22 January 2025

© 2025 Kessler, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0)

CC BY 4.0                                                                                                   


Abstract

Background: Secondary cellular injury following spinal cord trauma contributes significantly to progressive neuronal loss, inflammation, oxidative stress, and functional decline. Bone-marrow–derived mesenchymal stem cells (BM-MSCs) have emerged as promising therapeutic candidates due to their potent immunomodulatory and neuroprotective properties. This study investigated the effects of BM-MSC transplantation on neuronal preservation, inflammatory signaling, apoptotic pathways, and functional recovery in a rat model of moderate contusion spinal cord injury (SCI).

Methods: Adult male Wistar rats were randomized into three groups: Sham, SCI + Vehicle, and SCI + MSC. A standardized T9–T10 contusion injury was induced using the NYU impactor. BM-MSCs (1×10⁶ cells) were administered intrathecally 24 h post-injury. Locomotor recovery was assessed using BBB scoring over 28 days. Histopathology (H&E, Nissl), immunohistochemistry (NeuN, GFAP, Iba-1, caspase-3, 8-OHdG), qRT-PCR, and Western blot were used to evaluate neuronal survival, glial activation, inflammation, apoptosis, and oxidative stress.

Results: MSC-treated rats demonstrated significantly improved BBB locomotor scores compared with vehicle controls (p < 0.01). Histological analyses revealed markedly smaller lesion cavities and greater preservation of white matter. Nissl staining showed increased neuronal survival (~70% vs. ~40%). MSC therapy significantly reduced TNF-α, IL-1β, IL-6, Bax, and cleaved caspase-3 expression, while up-regulating IL-10 and Bcl-2 (p < 0.01). Oxidative stress markers, including 8-OHdG, were also reduced. GFAP and Iba-1 staining indicated diminished astrocyte and microglial activation, reflecting attenuation of glial scar formation.

Conclusions: BM-MSC transplantation confers robust neuroprotection by suppressing inflammation, apoptosis, and oxidative injury, while promoting neuronal survival and functional recovery following SCI. These findings highlight the therapeutic potential of BM-MSCs in mitigating secondary injury mechanisms and support further exploration toward clinical translation in spinal cord trauma.

Keywords: Spinal cord injury; Mesenchymal stem cells; Bone-marrow–derived MSCs; Neuroprotection; Secondary injury


References

1.       Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury—repair and regeneration. Nat Rev Neurol. 2017;13(4):241-255. doi:10.1038/nrneurol.2017.15

2.       Fehlings MG, Tetreault LA, Wilson JR, et al. A clinical practice guideline for the management of acute spinal cord injury. Glob Spine J. 2017;7(3_suppl):84S-94S. doi:10.1177/2192568217703085

3.       Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res. 2011;6(26):2171-2178. doi:10.3969/j.issn.1673-5374.2011.26.009

4.       Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:25-57. doi:10.1016/j.pneurobio.2013.11.002

5.       David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011;12(7):388-399. doi:10.1038/nrn3053

6.       Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11-15. doi:10.1016/j.stem.2011.06.008

7.       Kocsis JD, Honmou O. Mesenchymal stem cells as a therapeutic tool for CNS repair. Mol Neurobiol. 2012;45(3):699-706. doi:10.1007/s12035-012-8284-3

8.       Ruppert KA, Nguyen TT, Prabhakara KS, et al. Mesenchymal stem cell–derived extracellular vesicles mitigate injury responses in a cervical spinal cord injury model. J Neuroinflammation. 2020;17(1):97. doi:10.1186/s12974-020-01766-2

9.       Nakajima H, Uchida K, Guerrero AR, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012;29(8):1614-1625. doi:10.1089/neu.2011.2109

10.   Sofroniew MV. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 2020;41(9):758-770. doi:10.1016/j.it.2020.06.006

11.   Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in rats: association with neurotrophic factor expression. Cell Transplant. 2012;21(5):843-856. doi:10.3727/096368911X580554

12.   Anderson AJ, Haus DL, Hooshmand MJ, et al. Achieving stable human stem cell engraftment and survival through optimized cell delivery. Biomaterials. 2017;113:41-55. doi:10.1016/j.biomaterials.2016.08.053

13.   Bakshi A, Hunter C, Swanger S, Grady M. Minimally invasive delivery of stem cells for spinal cord injury. J Neurosurg Spine. 2011;14(3):381-389. doi:10.3171/2010.12.SPINE10493

14.   Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204-1219. doi:10.1161/CIRCRESAHA.108.176826

15.   Chen L, Huang H, Zhang W, et al. Mitochondrial stabilization and antioxidative protection by mesenchymal stem cells in spinal cord injury. Free Radic Biol Med. 2019;131:262-274. doi:10.1016/j.freeradbiomed.2018.11.007

16.   Park E, Velumian AA, Fehlings MG. The role of excitotoxicity in secondary mechanisms of spinal cord injury. Neurochem Int. 2004;45(2-3):245-254. doi:10.1016/j.neuint.2003.12.007

17.   Choi H, Kim H, Lee K, et al. Anti-apoptotic and neuroprotective effects of MSC transplantation following spinal cord injury. J Clin Med. 2020;9(5):1422. doi:10.3390/jcm9051422

18.   Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829-848. doi:10.3727/096368915X689622

19.   Popovich PG, Longbrake EE. Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci. 2008;9(6):481-493. doi:10.1038/nrn2398

20.   Hall ED, Springer JE. Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx. 2004;1(1):80-100. doi:10.1602/neurorx.1.1.80

21.   Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies. Clin Neurosurg. 2008;55:137-157.

22.   Silva NA, Sousa N, Salgado AJ, Reis RL. Hydrogels for cell therapy in spinal cord injury. Tissue Eng Part A. 2010;16(2):201-214. doi:10.1089/ten.TEA.2009.0378

23.   Zhang Y, Chopp M, Meng Y, et al. Exosomes derived from MSCs ameliorate neuronal apoptosis after SCI. J Neurotrauma. 2015;32(6):475-484. doi:10.1089/neu.2014.3753

24.   Wang L, Pei S, Han L, et al. Paracrine effects of MSCs on neuronal survival. Stem Cell Res Ther. 2018;9(1):156. doi:10.1186/s13287-018-0896-2

25.   Fehlings MG, Vawda R. Cellular therapies for spinal cord injury. Nat Rev Neurol. 2011;7(12):726-734. doi:10.1038/nrneurol.2011.173

26.   Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cord injury and immune regulation. J Neurosci. 2006;26(36):9328-9338. doi:10.1523/JNEUROSCI.2934-06.2006

27.   Lankford KL, Arroyo EJ, Karl M, et al. MSCs rescue axons via trophic support. Exp Neurol. 2018;300:52-62. doi:10.1016/j.expneurol.2017.11.005

28.   Horner PJ, Gage FH. Regenerating the injured CNS: focus on stem cells. Nat Rev Neurosci. 2000;1(1):31-40. doi:10.1038/35036154

29.   Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis in SCI. J Neuroinflammation. 2012;9:204. doi:10.1186/1742-2094-9-204

30.   Ma Z, Huang Z, Zhang L, et al. MSC-treated SCI improves vascular stabilization. Cell Transplant. 2018;27(10):1604-1616. doi:10.1177/0963689718800341

31.   Yang Y, Ye D, Fang Z, et al. MSCs modulate oxidative damage in SCI. Neuroscience. 2019;413:16-27. doi:10.1016/j.neuroscience.2019.06.012

32.   Ruzicka J, Machova-Urdzikova L, Gillick J, et al. A comparative study of stem cells in SCI. Stem Cell Res Ther. 2017;8(1):176. doi:10.1186/s13287-017-0622-2

33.   Neuhuber B, Timothy H, Shumsky JS, et al. MSC engraftment after SCI. J Comp Neurol. 2005;493(1):1-17. doi:10.1002/cne.20715

34.   Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Inflammation and secondary injury in SCI. J Neurosci. 2009;29(3):753-764. doi:10.1523/JNEUROSCI.4768-08.2009

35.   Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open-field testing in rats. J Neurotrauma. 1995;12(1):1-21. doi:10.1089/neu.1995.12.1

36.   Hou S, Xu Q, Tian W, et al. MSC therapy improves white matter preservation after SCI. Brain Res. 2016;1646:90-100. doi:10.1016/j.brainres.2016.05.020

37.   Ramer LM, Ramer MS, Bradbury EJ. Restoring function after SCI—molecules and mechanisms. Nat Rev Neurosci. 2014;15(12):671-685. doi:10.1038/nrn3801

38.   Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation strategies for spinal cord repair. Nat Neurosci. 2017;20(5):637-647. doi:10.1038/nn.4541

39.   Curtis E, Martin JR, Gabel B, et al. Clinical trial of human-derived stem cells for SCI. Cell Stem Cell. 2018;22(6):941-950.e6. doi:10.1016/j.stem.2018.05.014

BM-Publisher · Pathophysiology of Cell Injury Journal (PCIJ) · E-ISSN 2378-5225 · DOI Prefix 10.18081/2378-5225

Pathophysiology of Cell Injury Journal (PCIJ)
E-ISSN 2378-5225 · Biannual
BM-Publisher (London, UK)
Open Access

Vol 14, Issue 1 (June 2025), pp. 1–17

How to cite (AMA)

Halstrom A, Delaney M, Kessler J. Bone-Marrow–Derived MSC Transplantation Enhances Neuronal Survival and Reduces Secondary Cellular Injury in Rat Spinal Cord Trauma Models. Pathophysiology of Cell Injury Journal (PCIJ). 2025;14(1):18–37. doi: 10.18081/pcij/2378-5225/14.18.

More citation

Aiden R. Halstrom, M. K. D. J. T. K. (2025). . Pathophysiology of Cell Injury Journal (PCIJ), . https://pcij.net/archives/1671
Aiden R. Halstrom, Marissa K. Delaney, Julian T. Kessler. \".\" Pathophysiology of Cell Injury Journal (PCIJ), 2025, pp. . https://pcij.net/archives/1671
Aiden R. Halstrom, Marissa K. Delaney, Julian T. Kessler. . Pathophysiology of Cell Injury Journal (PCIJ). 2025;:. https://pcij.net/archives/1671
Aiden R. Halstrom, Marissa K. Delaney, Julian T. Kessler (2025) . Pathophysiology of Cell Injury Journal (PCIJ), , pp. . Available at: https://pcij.net/archives/1671
@article{aiden-r-halstrom-marissa-k-delaney-julian-t-kessler-2025, title = {}, author = {Aiden R. Halstrom, Marissa K. Delaney, Julian T. Kessler}, journal = {Pathophysiology of Cell Injury Journal (PCIJ)}, year = {2025}, url = {https://pcij.net/archives/1671}, }
TY - JOUR AU - Aiden R. Halstrom, Marissa K. Delaney, Julian T. Kessler TI - JO - Pathophysiology of Cell Injury Journal (PCIJ) PY - 2025 UR - https://pcij.net/archives/1671 ER -

PlumX Metrics