Mechanistic role of let -7c in breast cancer cell activity

crossMark
Pathophysiology of Cell Injury Journal  Volume 3, Issue 1, pages 22-34 June 2014

Michael Philip; Edwin Looney; Nasser Ghaly Yousif; Kim  A Schwager; Steven Sharma; Danielle D Paterson; Saija Burk; Kieran Radziwill; Schmittgen; Maria Eves; Giorgio Inoue; Douglas L Hainz

Abstract

Let-7 and its family members are highly conserved across species in sequence and function. They form an important class of regulators that participate in diverse biological functions including development, cell proliferation, differentiation, and apoptosisand, misregulation of let-7 leads to a less differentiated cellular state and the development of cell-based cancer. A growing body of evidence suggests that restoration of let-7 expression may be a useful therapeutic option in cancers, where its expression has been lost. Using breast cancer as a model, we have determined that breast cancer cells express high levels of the microRNA let-7, suggesting that let-7 is a marker for cancers. 

Keywords: microRNA; Cancer cell; Let-7c; Metastasis

Full Text-PDFReferences

Choose an option to access this article:
1. Purchase this article at rate $55.00 and received Full-Text/PDF
You will have online immediate access to article following the completion of this purchase and you may download and print a copy of each article for your personal use.
2. Full-Text/PDF access through your institution subscription password:

References

1. Breast cancer is a disease in which malignant (cancer) cells form in the tissues of the breast. National Cancer Institute, 2013.

2. What Are the Key Statistics About Breast Cancer in Men? American Cancer Society, 2007.

3. Abbott AL, Alvarez-Saavedra E, et al. The let-7 microRNA family member’s mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental Cell 2005; 9 403– 414. [PubMed]

4. Bartel DP. MicroRNAs. genomics, biogenesis, mechanism, and function. Cell 2004;116:281–297. [PubMed]

5. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005;120:21–24. [PubMed]

6. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol 2005;3:e85. [PubMed]

7 Ambros V. The functions of animal microRNAs. Nature 2004;431:350–355. [PubMed]

8. Lai EC. microRNAs: Runts of the genome assert themselves. Curr Biol 2003;13:R925–R936. [PubMed]

9. Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004;116:281–297. [PubMed]

10. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001;106:23–34. [PubMed]

11. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003;13:790–795. [PubMed]

12. Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila.Genome Biol 2003;5:R1. [PubMed]

13. Desantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer Journal for Clinicians 2011;61(6):409–418. [PubMed]

14. Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone.Cancer Cell 2003;3(6):537–549. [PubMed]

15. Gregory RI, Chendrimada TP, Shiekhattar R. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods in Molecular Biology 2006;342:33–47. [PubMed]

16. Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery.Current Opinion in Cell Biology 2004;16(3):223–229. [PubMed]

17. Ohler U, Yekta S, Lim LP, Bartel DP, Burge CB. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 2004;10:1309–1322. [PubMed]

18. Bossé GD, Simard MJ. A new twist in the microRNA pathway: not dicer but argonaute is required for a microRNA production. Cell Research 2010;20(7):735–737. [PubMed]

19. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiological Reviews 2011;91:827–887. [PubMed]

20. Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Current Issues in Molecular Biology 2012;15:7–18. [PubMed]

21. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biology 2005;3(3, article e85). [PubMed]

22. Zhu S, Si M-L, Wu H, Mo Y-Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry 2007;282(19):14328–14336. [PubMed]

 

Print Friendly, PDF & Email